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Results

General-Purpose In-Context Learning (GPICL)

Drive advancements in 
Machine Learning via Meta 
Learning


Enable reusability across a 
wide range of tasks 

Here: Focus on memory-
based / in-context learning

General Purpose Meta Learning

Meta-learned 
Learning 

Algorithm
Generalize

Learning = Improving predictions  with larger 


With black-box models such as LSTMs or Transformers

y′ D = {xi, yi}
ND
i=1

GPICL Transformer

x1 0 x2 y1 x′ 3 y2

… 

y′ 1 y′ 2 … y′ 3

Third suppoH set

Third query set

Hypothesis: Many diverse tasks → General-Purpose In-Context Learning-to-learn

What is an In-Context Learning Algorithm?

In supervised learning    ({xi, yi}
ND
i=1, x′ ) ↦ y′ • Meta-train multi-task 

across  tasks

• Only a single prediction head

n

Base dataset 
eg MNIST dataset

D̄ = {x̄i, ȳi}
Create  tasksn

Linear projection

Aij ∼ 𝒩 (0,
1
Nx )D = {Ax̄i, ρ(ȳi)}

Label Permutation

Label  one-hot index↦

Linear 
projection

Generating Tasks for Learning-To-Learn

Transformer
MLP: x′ ↦ y′ 

Transformer: ({xi, yi}
ND
i=1, x′ ) ↦ y′ 

Each element in the sequence 
is from the same task (projection)

At a ceIain model size and number of tasks, the Transformer generalizes to a seemingly 
unbounded number of tasks

Learn-To-Learn

Large Sequence Models and Data
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The meta-trained GPICL learns from examples at test time, and 
generalizes to unseen datasets

ΔLearning = 
within-sequence 
improvement

The Emergence of Learning-To-Learn
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Phase Learning Generalization Algorithm Description

① ⤬ No ⤬ No Instance memorization

② ✓ Yes ⤬ No System identiUcation / Task memorization

③ ✓ Yes ✓ Yes General-purpose learning algorithm

Transformers exhibit 
three diNerent 
phases in terms of 
meta-learned 
behaviorExamples seen
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Δ

Transitioning from Memorization to Learning
The  state  size  (accessible  memory)  of  an  architecture  
most  strongly  predicts  its peOormance as a general-
purpose learning algorithm

Architecture: A Large State is Crucial for Learning

@LouisKirschAI

Δ

① ② ③

• Transformers and other black-box models can be meta-
trained to act as general-purpose in-context learners


• There are phase transitions between algorithms that 
generalize, algorithms that memorize, and algorithms that 
fail to meta-train at all, induced by changes in model size, 
number of tasks, and meta-optimization

• The capabilities of meta-trained learning 
algorithms are boPlenecked by the 
accessible state size (memory) unlike 
standard models which are thought to be 
bo[lenecked by parameter count

J(θ) = 𝔼D∼p(D)

ND

∑
j=1

l( fθ(D1:j−1, xj), yj)

https://twitter.com/LouisKirschAI

